Mechanical Response of DNA–Nanoparticle Crystals to Controlled Deformation
نویسندگان
چکیده
The self-assembly of DNA-conjugated nanoparticles represents a promising avenue toward the design of engineered hierarchical materials. By using DNA to encode nanoscale interactions, macroscale crystals can be formed with mechanical properties that can, at least in principle, be tuned. Here we present in silico evidence that the mechanical response of these assemblies can indeed be controlled, and that subtle modifications of the linking DNA sequences can change the Young's modulus from 97 kPa to 2.1 MPa. We rely on a detailed molecular model to quantify the energetics of DNA-nanoparticle assembly and demonstrate that the mechanical response is governed by entropic, rather than enthalpic, contributions and that the response of the entire network can be estimated from the elastic properties of an individual nanoparticle. The results here provide a first step toward the mechanical characterization of DNA-nanoparticle assemblies, and suggest the possibility of mechanical metamaterials constructed using DNA.
منابع مشابه
Effect of Deformation Temperature on the Mechanical Behavior of a New TRIP/TWIP Steel Containing 21% Manganese
In recent years, TRIP/TWIP steels have been the focus of great attention thanks due to their excellent tensile strength-ductility combination. The compression tests were performed at different temperatures from 25 to1000°C to study the mechanical behavior of advanced austenitic steel with 21% manganese plus bearing Ti. The results indicated that the plastic deformation is controlled by deformat...
متن کاملEmploying Foundation Nonlinearity to Mitigate Seismic Demand in Superstructure
Because of difficulty in inspection and retrofit of foundation in comparison with other elements, the common design philosophy is to avoid any nonlinear deformation in the foundation. This paper shows that by employing controlled foundation nonlinearity, in predetermined sections with arrangements for inspection and retrofit, it is possible to reduce seismic demand on superstructure. Localizing...
متن کاملResponse Determination of a Beam with Moderately Large Deflection Under Transverse Dynamic Load Using First Order Shear Deformation Theory
In the presented paper, the governing equations of a vibratory beam with moderately large deflection are derived using the first order shear deformation theory. The beam is homogenous, isotropic and it is subjected to the dynamic transverse and axial loads. The kinematic of the problem is according to the Von-Karman strain-displacement relations and the Hook's law is used as the constitutive eq...
متن کاملMulti-length scale design of deformation processes for control of orientation (texture) dependent properties
Design of deformation (thermo-mechanical) processes to achieve desired structural response will be addressed. Plastic deformation is assumed to be accommodated through crystallographic slip and reorientation of crystals. Conventional methodologies towards polycrystal plasticity use an aggregate of single crystals and this choice of the aggregate affects the response of the polycrystal. In order...
متن کاملFree Vibration and Transient Response of Heterogeneous Piezoelectric Sandwich Annular Plate Using Third-Order Shear Deformation Assumption
Based on the third-order shear deformation theory (TSDT), this paper numerically investigates the natural frequencies and time response of three-layered annular plate with functionally graded materials (FGMs) sheet core and piezoelectric face sheets, under initial external electric voltage. The impressive material specifications of FGM core are assumed to vary continuously across the plate thic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2016